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World of catastrophes
Nature

2004/12/26 – Sumatra-Andaman Earthquake
Magnitude estimate between 9.1 and 9.3
Triggered tsunamis causing 230,000 fatalities

2005/08 – Hurricane Katrina
1,836 dead
$81.2 billion damage

Human
26 April 1986 – Chernobyl atomic reactor meltdown
11 September 2001 – Twin Towers in New York

–



Catastrophes: science
Great Hanshin earthquake (1995). Killed over 6,400
people in and around Kobe, Japan.

The data served to prototype a rescue simulation:
Robocup Rescue Domain

Captures the dynamics of natural and man factor
disasters and civil disorders

Includes uncertainty of various parameters
Realistically simulates the events: fire, traffic,
building collapses, road blockage, etc.

–



Robocup Rescue - Scenario
Given a post-event situation

Civilians trapped under collapsed buildings, and
their life signs weakening with time
Some access routs are blocked or destroyed
Fires and civil disorder start and spread throughout
the event site

Manage platoons of Fire brigades, Police forces and
Ambulance teams

Save as many people as possible
Recover and preserve site and its infrastructure
(buildings, communications, etc.)

–



Robocup Rescue - Elements
General capabilities

Mobility, communication, partial situation
awareness at higher reasoning levels

Specialisations
Ambulance teams rescue civilians from rubble and
transport to safety
Fire brigades extinguishing fires
Police forces for traffic ordering, general order and
safety

Our Target: Provide automated decision and
information support for time critical and potentially
irreversible decisions.

–



Task 1: ambulance allocation
Multiple ambulance services

Business oriented operation
Competition for government funds and public
opinion

Given several locations that require medical
assistance, how many ambulances from which firm will
go to which location?

–



Task 2: police patrols
Low ratio of police force vs. operative requirements

How frequently and with what qualitative force to patrol
an area?

How many safe routs vs their quality can the given
police force support? Can and should it be adapted
over time?

–



Task 3: firefighters
Maintain effort toward saving the building or draw back
and minimise the spread of fire?

Concentrate on a multitude of smaller fires or allow
controlled unification and deal with only one location?

Will transportation routs be endangered?
Are there still civilians evacuating from the
area/building?

Push through the fire to victims or save the fire crew
and pull out?

If multiple crews are on site, which one goes?
When?

–
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Dimensions of interactionDimensions of interaction

Single or Extended
Strategies in extended interactions may be 

different
Extended: Finite or infinite interactions

Cooperative or Non-cooperative

Team HostileNeutral



Dimensions of interactionDimensions of interaction

Joint reward or Joint reward and state
State is dynamic, influenced by actions
State may influence rewards as well

Perfect or Incomplete information about 
others



Predictive and epistemological 
requirements of solutionrequirements of solution

In order to maximize rewards, predict actions of 
othersothers

Common knowledge of rationality
All agents are rational; All know that all are rational; All 

know that all know that all are rational; ...

Common and perfect knowledge of rewards
All know others’ rewards; All know that all know others’ 

rewards; ...

Common and partial knowledge of rewards
Probability distribution over possible rewards is common 

knowledge



Predictive and epistemological 
requirements of solutionrequirements of solution

Epistemological requirements for rational behavior are strict!Epistemological requirements for rational behavior are strict!



Models of interactions (first glance)Models of interactions (first glance)

Single and repeated interactions with joint 
rewards are the focus of traditional game theory

Interactions involving joint state and reward are 
the focus of decision theory inspired approaches 
to game theory. These generally include 
extensions of single agent decision theoretic extensions of single agent decision-theoretic 
models to multiagent settings 



Other applicationsOther applications

RoboticsRobotics

Planetary exploration

S f  i  b  Surface mapping by rovers

Coordinate to explore pre-
defined region optimally Spirit Opportunitydefined region optimally

Uncertainty due to sensors

Robot soccer

Spirit Opportunity

Robot soccer

Coordinate with teammates 
and deceive opponentspp

Anticipate and track others’ 
actions RoboCup Competition



Other applicationsOther applications
Defense

C di  UAV  Coordinate UAV movements 
in battlefields

Exact “ground Exact ground 
situation” unknown

Coordinate anti-air defense 
unitsunits

Distributed SystemsDistributed Systems
Networked Systems

Packet routing
Sensor networks



Classroom game: Prisoner’s dilemmaClassroom game: Prisoner s dilemma
Instructions

W   i  t  l   d  i  hi h b d  ill b  t h d ith  i  th  We are going to play a card game in which everybody will be matched with someone in the 
room. I will now give each of you a pair of playing cards, one red card (♥ or ♦) and one black 
card (♠ or ♣). The numbers or faces on the cards will not matter, just the color. You will be 
asked to play one of these cards by holding it to your chest . Your earnings are determined by 
the card that you play and by the card played by the person matched with you. 

If you play your red card, then your earnings will increase by $2, and the earnings of the 
person matched with you will not change. If you play your black card, your earnings do not 
change and the earnings of the person matched with you go up by $3. If you each play your 
red card, you will each earn $2. If you each play the black card, you will each earn $3. If you 
play your black card and the other person plays his or her red card, then you earn zero and the 
other person earns the $5  If you play red and the other person plays black  you earn the $5  other person earns the $5. If you play red and the other person plays black, you earn the $5, 
and the other person earns zero. All earnings are hypothetical. After you choose which card to 
play, hold it to your chest. We then tell you who you are matched with, and you can each 
reveal the card that you played. Record your earnings in the space below. To make this easier, 
please write your name: ____________________ . 

To begin: Would the people in the row that I designate please choose which card to play and 
write the color (R or B) in the first column. Show that you have made your decision by picking 
up the card you want to play and holding it to your chest. Everyone finished? Now, I will pair 
you with another person, ask you to reveal your choice, and calculate your earnings. 
Remember to keep track of earnings in the space provided below. Finally, please note that in 
period 2 you will be matched with a different person  and payoffs will change  In period 3 you period 2 you will be matched with a different person, and payoffs will change. In period 3 you 
will be matched with a different person and payoffs change again, but you get to play with 
him/her in the last three periods.



Classroom game: Prisoner’s dilemmaClassroom game: Prisoner s dilemma
Your payoff table

Period Your card Other’s card Your 
(R or B) (R or B) earnings

1

22

3

4

5



Classroom game: Prisoner’s dilemmaClassroom game: Prisoner s dilemma

Payoff table for Period 1

black red

Player II

ayo tab e o e od

black 3,3 0,5

red 5,0 2,2
Player 

I

Payoff table for Period 2

black red

Player II

black 8,8 0,10

red 10,0 2,2
Player 

I



Game in Normal Form
Defined by a tuple < I, {Ai}i∈I , {Ri}i∈I >

I is the set of players, usually I = {1, ..., n}

Ai is the set of actions (pure strategies) available to
player i.

Space of pure strategy profiles A =
⊗
i∈I

Ai

Let a = (ai, a−i) ∈ A. Where ai ∈ Ai is the action
prescribed to agent i, and a−i ∈

⊗
j∈I\{i}

Aj = A−i

portion of profile adopted by other agents.
Ri : A → R is the reward (utility) of the player i,
given that players simultaneouslyplay their actions

Each agent rationally seeks to maximise its utility

–



Roadmap: Why game is a game?
Is there a guarantee of utility if I don’t know how others
act?

If I know how others act, how should I?
What if I can guess, but not certain?

If the game is to be repeated, should I act differently?

– p. 12



Guarantees
“Enemy assumption”: A player assumes that all others
collude against it.

Essentially a zero sum game
I = 1, 2, and R1 = −R2.

Guarantee is max
a1∈A1

min
a2∈A2

R1(a1, a2)

Simplest example: Fire station location

–



Guarantees: example
Two plants A and B build a new private fire station

Where should it be located?

Assume fires are deliberate, then time of arrival
dictates utility for the Fire Brigade:

Fire at
A A and B B

S
ta

tio
n near A 0 -1 -1

middle -0.5 -0.5 -0.5
near B -1 -1 0

Minimax value is −0.5 and minimax strategy is middle

–



Equilibria
Given a partial profile a−i ∈ A−i the action choice of
agents except i ∈ I.

a∗i is a best response of agent i ∈ I to a−i if
a∗i ∈ arg max

ai∈Ai

Ri(ai, a−i)

A strategy profile(joint action) a ∈ A is a pure Nash
equilibria if for all i ∈ I ai is a best response to a−i.

–



Equilibria: example
Two plants A and B build a new private fire station.
Where should it be located?

Assume fires are deliberate, then time of arrival
dictates utility for the Fire Brigade:

A A and B B
near A 0 -1 -1
middle -0.5 -0.5 -0.5
near B -1 -1 0

The pair (A and B, middle) is a pure Nash equilibria

–



Non-existence of pure Nash
Police sends patrols to plant A and plant B to try and
catch the saboteurs.

Utility is determined by the similarity of actions:
A B

A 1 -1
B -1 1

It is easy to see that no pair (apolice, asaboteur) is an
equilibrium profile.

Intuition: Surprise factor by randomisation

–



Mixed profile
Mixed strategyof an agent i ∈ I is a probability
distribution πi over Ai, where π(ai) is the probability of
selecting action ai.

Denote ∆i the set of all probability distributions over
Ai. Mixed strategy profile(joint mixed strategy) is a
distribution π = (πi, π−i) ∈

⊗
i∈I

∆i.

π(a) =
∏
i∈I

πi(ai) is the probability that agents will

jointly select pure profile a ∈ A.
Expected utilityis then Eπ[Ri] =

∑
a∈A

π(a)Ri(a)

–



Mixed Nash equilibrium
Given partial mixed profile π−i. π∗

i is a best response
mixed strategy if π∗

i ∈ arg max
πi∈∆i

E(πi,π−i)[Ri]

A complete mixed profile π is in mixed Nash equilibrium
if for all i ∈ I, πi is a best response to π−i.

For the police patrol example equally probable choice
is an equilibrium.

–



Sad example
Ambulances are independent business services

Cost driven and competitive

Government funds:
Distributed in proportion to saved lives
Recognition for success in major events

Scenario:
Two ambulance services
Three events: two are minor one major

Minor events are local to the services
Major event necessitates both services to handle

–



Sad example (cont)
Assume that total government funds are 4 units

If the major event is handled extra 2 units are allocated

The utilities can be summarised by:
Major Minor

Major (3,3) (0,4)
Minor (4,0) (2,2)

Problem: It is always best to handle the minor event.

But in real life they do concentrate on major events.
Why?

–



Repeated games
Ambulance services “play” this game repeatedly.

Long term accumulation of utility
For infinite repetition discounting by γ < 1 or
averaging of a single repetition utility, rt

i, are used.
∞∑
t=1

γtrt
i or lim

T→∞

1
T

T∑
t=1

rt
i

Sequences of actions (or rules composing them) are
considered

Behaviour rules producing action sequences are
termed policy
In presence of memory new possibilities occur:
trust, revenge, reciprocity, etc.

–



Happy example
Consider again:

Major Minor
Major (3,3) (0,4)
Minor (4,0) (2,2)

Assume the following tit-for-tat policy:
At first attempt to choose “Major”
Then mimic the previous action of the other agent

It is easy to see that TFT is an equilibrium for infinite
utility accumulation, and that (Major, Major) is infinitely
repeated.

–



Bayesian gamesBayesian games
Relax the assumption of perfect knowledge of 

t ’ dagents’ rewards

Type system
Agent’s type: Encompasses private information 

relevant to the agent’s behaviorrelevant to the agent s behavior
Joint probability distribution over types, which is 

common knowledgeg



Bayesian gamesBayesian games

In Harsanyi's own words:In Harsanyi s own words:

“. . . we can regard the attribute vector ci as representing certain 
physical, social, and psychological attributes of player i himself in that it p y , , p y g f p y f
summarizes some crucial parameters of player i's own payoff function Ui 
as well as main parameters of his beliefs about his social and physical 
environment . . .”



Bayesian games – Example Bayesian games – Example 

Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Enter Stay out

Enter 1.5,-1 3.5,0Police 
Patrol

Stay 
out

2,1 3,0 Stay 
out

2,1 3,0Patrol

Policing is weak Policing is strong

Type space: },{ StrongWeakPolice RR=Θ



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

Let p be the probability that the police is weak

Policing is weak Policing is strong

p p y p

Enter Stay out

Enter, Enter 1.5(1-p),-1 2p+3.5(1-p),0

Enter, Stay out 2(1-p), -p+(1-p) 2p + 3(1-p),0

Stay out, Enter 2p + 1.5(1-p), p – (1-
p)

3p + 3.5(1-p),0

Stay out, Stay 
out

2,1 3,0
out



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

For all p ≥ 0, (Enter, Enter) and (Enter, Stay out) is 

Policing is weak Policing is strong

p , ( , ) ( , y )
dominated

Enter Stay out

Enter, Enter 1.5(1-p),-1 2p+3.5(1-p),0

Enter, Stay out 2(1-p), -p+(1-p) 2p + 3(1-p),0

Stay out, Enter 2p + 1.5(1-p), p – (1-
p)

3p + 3.5(1-p),0

Stay out, Stay 
out

2,1 3,0
out



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

For all p ≥ 0, (Enter, Enter) and (Enter, Stay out) is 

Policing is weak Policing is strong

p , ( , ) ( , y )
dominated

so the games collapses into:

Enter Stay out

Stay out, Enter 2p + 1.5(1-p), p – (1-
p)

3p + 3.5(1-p),0
p)

Stay out, Stay 
out

2,1 3,0



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

Policing is weak Policing is strong

Enter Stay outy

Stay out, Enter 1.5 + 0.5p, 2p -1 3.5 – 0.5p, 0

Stay out, Stay 2 1 3 0

For p > 0.5, Enter is a dominating action for the criminal and 
{(Stay out  Stay out) Enter} is a Nash equilibrium 

Stay out, Stay 
out

2,1 3,0

{(Stay out, Stay out),Enter} is a Nash equilibrium 
For p ≤ 0.5, {(Stay out, Stay out), Enter} and {(Stay out, 

Enter), Stay out} are Nash equilibria



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

Policing is weak Policing is strong

Enter Stay outy

Stay out, Enter 1.5 + 0.5p, 2p -1 3.5 – 0.5p, 0

Stay out, Stay 2 1 3 0

EU(Stay out, Enter) =
EU(Stay out  Stay out) =

Stay out, Stay 
out

2,1 3,0

)2(5.05.3)5.05.3)(1()5.05.1( −+−=−−++ pxppxxp
+ 3)1(32EU(Stay out, Stay out) =

Police is indifferent when  
xxx −=−+ 3)1(32

2/1
3)2(5.05.3

=
−=−+−

x
xpxpp

2/1=x



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

Policing is weak Policing is strong

Enter Stay outy

Stay out, Enter 1.5 + 0.5p, 2p -1 3.5 – 0.5p, 0

Stay out, Stay 2 1 3 0

EU(Enter) =
EU(Stay out) =

Stay out, Stay 
out

2,1 3,0

1)22()1(1)12( +−=−+− ypyyp
0EU(Stay out) =

Criminal is indifferent when  
0

)1(2/1
0)22(1

py
py
−=
=−+
)1(2/1 py=



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

3 B i  N h ilib i

Policing is weak Policing is strong

3 Bayesian Nash equilibria
{Stay out, Enter} for any p
{(Stay out, Enter), Stay out} if p ≤ 0.5{( y , ), y } p

if p ≤ 0.5 }
2
1,

2
1,

)1(2
21,

)1(2
1{

p
p

p −
−

− 22)1(2)1(2 pp



Bayesian gamesBayesian games

In general, a strategy profile            is a 
Bayesian Nash equilibrium if for each agent i

},{ ji ππ

and its type,    , iθ
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Repeated gamesRepeated games

In game theory, two models of decision-
making in repeated interactions are popular: 

Fictitious playp y
Rational learning



Repeated games – Fictitious playRepeated games – Fictitious play
Simplest model of decision-making in repeated games
At each stage  an agent ascribes a mixed strategy to the At each stage, an agent ascribes a mixed strategy to the 
other,
Other agent is assumed to act according to this mixed 
strategy

)( j
t

i ab

strategy
The strategy is computed as follows:
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Agent computes its best response to the mixed strategy of 
other  



Fictitious play – ExampleFictitious play – Example
Police patrol 2

Coordination 

Enter Stay out

Enter 0,0 1,1Police 
game

, ,
Stay out 1,1 0,0

patrol 1

2 pure strategy Nash equilibria and one mixed strategy 
Nash equilibrium

{E t  St  t} {St  t  E t }{Enter, Stay out} {Stay out, Enter}

{ }5.0,5.0,5.0,5.0



Fictitious play – ExampleFictitious play – Example
Police patrol 2

Coordination 

Enter Stay out

Enter 0,0 1,1Police 
game

, ,
Stay out 1,1 0,0

patrol 1

Round Patrol 1 Patrol 2 1’s belief 2’s belief

0 (1,0.5) (1,0.5)

1 Stay out Stay out (1,1.5) (1,1.5)

2 Enter Enter (2,1.5) (2,1.5)

3 Sta  o t Sta  o t (2 2 5) (2 2 5)3 Stay out Stay out (2,2.5) (2,2.5)

4 Enter Enter (3,2.5) (3,2.5)

... ... ... ... ...



Fictitious play – ExampleFictitious play – Example
Police patrol 2

Coordination 

Enter Stay out

Enter 0,0 1,1Police 
game

, ,
Stay out 1,1 0,0

patrol 1

Round Patrol 1 Patrol 2 1’s belief 2’s belief

0 (1,0.5) (1,0.5)Nash equilibrium!
1 Stay out Stay out (1,1.5) (1,1.5)

2 Enter Enter (2,1.5) (2,1.5)

3 Sta  o t Sta  o t (2 2 5) (2 2 5)

Nash equilibrium!

3 Stay out Stay out (2,2.5) (2,2.5)

4 Enter Enter (3,2.5) (3,2.5)

... ... ... ... ...



Fictitious playFictitious play
Interesting properties

If an action vector is a strict Nash equilibrium of a 
stage game, it is the steady state of fictitious play in the stage game, it is the steady state of fictitious play in the 
repeated game

If th  i i l di t ib ti  f h t’  t t i  If the empirical distribution of each agent’s strategies 
converges in fictitious play, then it converges to a Nash 
equilibrium

Fictitious play in repeated games converges if the 
game is a 2x2 game with generic payoffs or is a zero-game is a 2x2 game with generic payoffs or is a zero
sum game



Roadmap: Stochastic Games
Games become increasingly general

Some interaction parameters can be uncertain
E.g. in Bayesian Equilibria the reward

Interaction can be extended over time
E.g. in FP a long term reward average was used

What other properties can be generalised?
A repeated game can have a state

E.g. the amount of water firefighters have
A game can be partially observed (monitored)

E.g. fumes and smoke conceal the actual fire

– p. 2



Markovian Environment
Consider the tuple < S, s0, A, T >

S set of agent’s world states, with s0 being the
initial one
A is the set of actions available to the agent
T : S ×A× S → [0, 1] is the transition matrix.
T (s′, a, s) is the probability that the world will
change from state s ∈ S to state s′ ∈ S if agent
performs a ∈ A

What a rational agent would do with such a setting?

–



How does it work?
At time t = 0 the world starts at state s0

Then decision loop is repeated
Agent chooses an action at ∈ A

Action at is applied
The world changes its state. st+1 is chosen w.r.t.
T (·|st, at)

Time step occurs t← t + 1

How does an agent choose its action?

–



Example
For example the crime rate is weakly responsive to the
police presence

Modelled by a Markovian environment
S = {high,medium, low} is the crime rate
A = {large, small} is the police force size

T (·, a, ·)
a = large a = small

high medium low high medium low
high 0 0.7 0.3 1 0 0

medium 0 0.5 0.5 0.5 0.5 0
low 0 0 1 0.1 0.3 0.6

–



Markov Decision Problem
The tuple < S, s0, A, T > is only the environment

Rational agents needs a performance measure to
decide on an action (sequence)

Markov Decision Problem (MDP) is a tuple
< S, s0, A, T, r >

Given a utility function r : S ×A× S → R

Utility based performance measure

Finite horizon T <∞: E

(
T∑

t=0
r(st+1, at, st)

)

Infinite horizon γ < 1: E

(
∞∑
t=0

γtr(st+1, at, st)

)

Infinite Average: lim
T→∞

E

(
1
T

T∑
t=0

r(st+1, at, st)

)

–



Action sequence by policy
Formally infinite performance measures would require
strategies to be infinite sequences of actions

Instead we define a policy
Repeatedly applied rule to construct the sequence
We’ll focus on π : S → ∆(A), where ∆(A) is the
space of distributions over A

Sufficiency of policy space
The sufficient statistics set for previous activity is
the domain
Performance may not be improved by a more
complex policy
π : S → ∆(A) is sufficient for single agent MDPs

–



How good is a policy?
Denote V π(s) the utility accumulated by
an agent following policy π if the system starts in state s.

V π(s) =
∑
a

π(s, a)
∑
s′

(R(s′, a, s) + γV π(s′)) T (s′|s, a)

Define auxiliary quality of action Qπ(s, a)

Denotes the utility gained by an agent by applying
a ∈ A in state s and then following policy π

V π(s) =
∑
a

π(s, a)Qπ(s, a)

Qπ(s, a) =
∑
s′

(R(s′, a, s) + γV π(s′))T (s′|s, a)

Notice that given π, V π is the solution to a system of
linear equations

–



Example
Crime rate model:

S = {high, medium, low} is the crime rate

A = {large, small} is the police force size

T (·, a, ·)
a = large a = small

high medium low high medium low

high 0 0.7 0.3 1 0 0

medium 0 0.5 0.5 0.5 0.5 0

low 0 0 1 0.1 0.3 0.6

Police chief will receive:
A reprimand if the crime rate increases
A frown from his neighbour if it remains the same
A medal if it drops
A bad reputation if he uses too much force

–



Example
Crime rate model:

S = {high, medium, low} is the crime rate

A = {large, small} is the police force size

T (·, a, ·)
a = large a = small

high medium low high medium low

high 0 0.7 0.3 1 0 0

medium 0 0.5 0.5 0.5 0.5 0

low 0 0 1 0.1 0.3 0.6

Police chief utility is:

R(·, a, ·)
a = large a = small

high medium low high medium low

high -1.5 0 0 -0.5 1 1

medium -2 -1.5 0 -1 -0.5 1

low -2 -2 -1.5 -1 -1 -0.5

–



Example
A policy π : S → ∆(A) for the chief would be to decide
how many people he send out every day with what
probability depending on that day’s situation.

Assume that he always send out large force
π(s) = (1, 0)

Assume also that he likes to say “Tomorrow is another
day” and assigns γ = 0.5

What would be his benefit?

–



Example
T (·, a = large, ·) R(·, a = large, ·)

high medium low high medium low

high 0 0.7 0.3 -1.5 0 0

medium 0 0.5 0.5 -2 -1.5 0

low 0 0 1 -2 -2 -1.5

V π(s) =
∑

s′

(R(s′, a, s) + γV π(s′))T (s′|s, a)

V π(h) = 0.0 ∗ (..) + 0.7 ∗ (0.0 + 0.5V π(m)) + . . .

0.3 ∗ (0.0 + 0.5V π(l))

V π(m) = 0.0 ∗ (..) + 0.5 ∗ (−1.5 + 0.5 ∗ V π(m)) + . . .

0.5 ∗ (0.0 + 0.5V π(l))

V π(l) = 0.0 ∗ (..) + 0.0 ∗ (..) + 1.0 ∗ (−1.5 + 0.5V π(l))

–



Example
T (·, a = large, ·) R(·, a = large, ·)

high medium low high medium low

high 0 0.7 0.3 -1.5 0 0

medium 0 0.5 0.5 -2 -1.5 0

low 0 0 1 -2 -2 -1.5

V π(s) =
∑

s′

(R(s′, a, s) + γV π(s′))T (s′|s, a)

V π(h) = 0.35V π(m) + 0.15V π(l)

V π(m) = −0.75 + 0.25V π(m) + 0.25V π(l)

V π(l) = −1.5 + 0.5V π(l)

–



Example
T (·, a = large, ·) R(·, a = large, ·)

high medium low high medium low

high 0 0.7 0.3 -1.5 0 0

medium 0 0.5 0.5 -2 -1.5 0

low 0 0 1 -2 -2 -1.5

V π(h) = −1.15 (max ≈ −0.59)

V π(m) = −2 (max ≈ −1.13646)

V π(l) = −3 (max ≈ −1.285714)

–



Optimal policy
Rational agent would like to find π∗ ∈ arg max

π
V π(s0)

Bellman-Ford Equation:
Exists V ∗ so that:

V ∗(s) = max
π

∑
a

π(s, a)
∑
s′

(R(s′, a, s) + γV ∗(s′)) T (s′|s, a)

V ∗ = max
π

V π, and exists π∗ so that V ∗ = V π∗

π∗(s, ·) = arg max
π(s,·)

∑
a

π(s, a)
∑
s′

(R(s′, a, s) + γV ∗(s′)) T (s′|s, a)

But how do we find V ∗??

–



Value Iteration
Dynamic Programming solution

Start from some arbitrary small V0(·)

Propagate back in time:
Vt+1(s) = max

π

∑
a

π(s, a)
∑
s′

(R(s′, a, s) + γVt(s
′)) T (s′|s, a)

Propagation step is a γ-contraction mapping
Procedure converges to V ∗

–



Policy Iteration
But we can have an intermediate policy:

Start with some arbitrary Q0(·, ·)

Loop the following:
Compute a greedy policy w.r.t. Qt:

π(s, a) = arg max
a

Qt(s, a)

Compute policy value V π

Compute
Qt+1(s, a) =

∑
s′

(R(s′, a, s) + γV π(s′)) T (s′|s, a)

Converges being a contraction mapping as well

–



Markov games
State may be subject to effects by more than one agent

Multiagent Markovian Environment < S, s0, {Ai}
N
i=1, T >

S and s0 ∈ S are the state space and initial state
Ai is the space of i’th agent actions
T : S ×A× S → [0, 1], where A =

⊗
Ai.

T (s′, a, s) is the probability that state will change
from s to s′ if joint action a = (a1, ..., aN ) is taken

Markov Game is then < S, s0, {Ai}
N
i=1, T, {Ri}

N
i=1 >

Ri : S × A→ R, where A =
⊗

Ai

Usually discount accumulated

–



Policy profile
For regular games we had a mixed strategy profile
π = (π1, ..., πN )

π(a) =
∏

πi(ai)

For Markov games we define a joint policy profile
π = (π1, ..., πN )

π(s, a) =
∏

πi(s, ai)

Notice that a policy of an individual agent may be
“pure”

For each s ∈ S exists a single ai ∈ Ai so that
π(s, ai) = 1

–



Minimax solution
For N = 2 and R1 = −R2 we can formulate a minimax
solution

Let V (s) be expected reward for the optimal policy
starting at state s ∈ S

Let Q(s, a1, a2) the expected reward for the optimal
policy if at first agents perform (a1, a2)

Then system of equations holds:
V (s) = max

π
min
a2

∑
a1∈A1

Q(s, a1, a2)π(a1)

Q(s, a1, a2) = R(s, a1, a2) + γ
∑

s′∈S

T (s′, a1, a2, s)V (s′)

–



Equilibrium solution
Given the estimate of quality Q(s, a) one can define
equilibrium

Policy profile π = (π1, ..., πN ) is an equilibrium if for any
π′ = (π′

i, π−i)∑
a∈A

π(s, a)Qi(s, a) ≥
∑
a∈A

π′(s, a)Qi(s, a)

–



Background: POMDPBackground: POMDP
Decision-making in single agent complex domains: 

Partially Observable Markov Decision ProcessPartially Observable Markov Decision Process

Single agent Tiger problem (digression from search & rescue)

Task: Maximize collection of gold over a 
finite or infinite number of steps while 
avoiding tiger

g g g p ( g )

avoiding tiger

Tiger emits a growl periodically (GL or 
GR)GR)

Agent may listen or open doors (L, OL, 
or OR)or OR)



Partially observable environment
A partially observable Markovian environment
< S, s0, A, T, Ω, O >

S state space of the world, s0 is the initial state
A is a set of actions available to the agent
T : S × A× S → [0, 1] is the transition function
Ω is the set of all possible observations
O : Ω× S × A× S → [0, 1] is the observability
function.

O(o|s′, a, s) is the probability that the agent will
observe o if it performed a and the world shifted
from s to s′.

–



Background: POMDPBackground: POMDP

Question 1: How rich should S be?Question 1: How rich should S be?
Answer: As much as you can

Question 2: What if other agents are present?

Problem

“... there is currently no good way to combine game
theoretic and POMDP control strategies.”g

- Russell and Norvig
AI: A Modern Approach, 2nd Ed.



Background: POMDPBackground: POMDP
Steps to compute a strategy (policy)

1. Model of the decision making situation:

iiiiii OCRTOAS ,,,,,, Ω

2. Update beliefs:

iiiiii

)()(: SASSE Δ→Ω××Δ

L GL
)Pr( TR

0 10.5

L GR

)()(

L,GL

)Pr( TR0 0.15

L,GR

)Pr( TR
0 10.85

)Pr( TR )(

0 10.

OR,* OL,*

)Pr( TR5



Background: POMDPBackground: POMDP
3. Optimal policy computation:

B ild h  l k h d h bili  Build the look ahead reachability tree
Dynamic programming (DP)



Background: POMDPBackground: POMDP
Dynamic Programming in POMDPsg g

OL OR
TL TR

L
TL TR



Background: POMDPBackground: POMDP
DP in POMDPs

Number of policy trees is exponential in 
observations and doubly exponential in horizons!

L

GL GR

L

GL GR

L

GL GR

OLOR

L

OLOL

L

LOR

OL

TL TROLL

GL GR

LL

GL GR

OLOR

GL GR

TL TR



Background: POMDPBackground: POMDP
DP in POMDPs

Prune suboptimal policy trees

L

GL GR

L

GL GR

L

OLOL

L

LOR

TL TROLL

GL GR

LL

GL GR

TL TR



Background: POMDPBackground: POMDP
Policies in the tiger problem

Look ahead 1 step
(horizon 1)

[0.0 – 0.02] [0.39 – 0.61] [0.61 – 0.98][0.02 – 0.39] [0.98 – 1.0]

LL LL L

* *GLGR*GLGR Look ahead 2 steps

LOL OR

Look ahead 2 steps
(horizon 2)

1 of 4 different policies



Partially Observable SGs
Environment < S, s0, {Ai}

N
i=1

, {Ωi}
N
i=1

, O, T >

S and s0 ∈ ∆(S) are the state space and initial state
Ai is the space of i’th agent actions
T : S × A× S → [0, 1] is the state transition function
Ωi is the i’th agent observations space
O : Ω× S × A× S → [0, 1] is the observability
function, where Ω =

⊗
Ωi

A POSG is then < S, s0, {Ai}
N
i=1

, {Ωi}
N
i=1

, O, T, {Ri}
N
i=1

>

Ri : S × A→ R, where A =
⊗

Ai

Usually discount accumulated

– p. 10



Roadmap: which POSG, if any?
Classification

Based on reward properties
E.g. if ∀i, j Ri = R, it is a team game:
DEC-POMDP

Based individual observability
Based on state space structure

POSGs are not all encompasing
E.g. reward is internal to agents

– p. 11



DEC-POMDP and I-POMDPDEC-POMDP and I-POMDP
common 

d rewardsreward reward

DECDEC--POMDPPOMDP
action action

physical statephysical stateobs obs

DECDEC POMDPPOMDP
perspectiveperspective

obs

joint 
rewardsreward rewardrewards

action action

reward

II--POMDPPOMDP
action action

physical statephysical stateobs obs

perspectiveperspective



DEC-POMDP and I-POMDPDEC-POMDP and I-POMDP
common 

d

DECDEC--POMDPPOMDP

rewardsreward reward

DECDEC POMDPPOMDP
perspectiveperspective

action action

physical statephysical stateobs obsobs

joint 
rewardsreward rewardrewards

action action

reward

II--POMDPPOMDP
action action

physical statephysical stateobs obs

perspectiveperspective



I-POMDPI-POMDP
Key ideas

Include possible behavioral models of other agents in  
the state space. Agent’s beliefs are distributions over 
the physical state and models of othersp y

Intentional (types) and subintentional models

Intentional models contain beliefs. Beliefs over models 
give rise to interactive belief systems 

Interactive epistemology, recursive modeling

Finitely nested belief system as a computable 
approximation of the interactive belief system

C b ’ b li f ( bj iCompute best response to agent’s belief (subjective 
rationality)



ApplicationsApplications

RoboticsRobotics

Planetary exploration

S f  i  b  Surface mapping by rovers

Coordinate to explore pre-
defined region optimally Spirit Opportunitydefined region optimally

Uncertainty due to sensors

Robot soccer

Spirit Opportunity

Robot soccer

Coordinate with teammates 
and deceive opponentspp

Anticipate and track others’ 
actions RoboCup Competition



I-POMDPI-POMDP
Definition of a finitely nested I-POMDP of strategy 

llevel for agent i in a 2 agent setting

iiiiili OCROTAIS ,,,,,, Ω
l

iiiiili ,,,,,,,

ISi,l is the set of interactive states

jljljljli SMMwhereMSIS ∪Θ=×= −−− 1,1,1,,

jjjjjljlj OCROTAb ,,,,,,1,1, Ω= −−θ and Bayes rational



I-POMDPI-POMDP
Definition of a finitely nested I-POMDP of strategy 

llevel    for agent i in a 2 agent settingl

iiiiili OCROTAIS ,,,,,, Ω

ISi,l is the set of interactive states
A is the set of joint actions

iiiiili ,,,,,,,

A is the set of joint actions
Ti is the transition function defined on the physical state 
(beliefs of others cannot be directly manipulated)
Ωi is the set of observations of agent i
Oi is the observation function (beliefs of others are not 
directly observable)directly observable)
Ri is the reward function of agent i



Interactive beliefs in I-POMDPInteractive beliefs in I-POMDP
“In interactive contexts […], it is important to take into 

account not only what the players believe about account not only what the players believe about 
substantive matters […] but also what they believe 
about the beliefs of other players.”
“One specifies what each player believes about the 
substantive matters, about the beliefs of others about 
these matters, about the beliefs of others about the , f f
beliefs of others, and so on ad infinitum.”

- Robert J. Aumann

New concept: Interactive beliefs
New approach to game theory: Epistemic  decision New approach to game theory: Epistemic, decision 
analytic



Interactive beliefs in I-POMDPInteractive beliefs in I-POMDP
Agent i’s belief is a distribution over the physical state 
and models of j

)( ii ISb Δ∈ )( ii

)( jj ISb Δ∈ )( jj ISb Δ∈

Uncountably infinite Hierarchical
belief systems
have been explored jj

)( ii ISb Δ∈ )( ii ISb Δ∈ )( ii ISb Δ∈ )( ii ISb Δ∈

in game theory



ObservationObservation
Amount of information in interactive belief 
hierarchy is finitehierarchy is finite

Information content decreases asymptotically with 
the number of levels

Q ti  1  H   l l  h ld  Question 1: How many levels should we 
include?
Answer: As many as we canAnswer: As many as we can

Can one work with infinite levels?
Answer: Yes, in some special cases, p



ObservationObservation
Minimax in Chess game

Model of agent’s possible moves
Model the other player’s possible responses

Assume she is rational (is she?)Assume she is rational (is she?)

Model the other player modeling the agent’s 
possible responses

Assume she believes agent is rational (does she?)

Model further ...
Assume that she believes that agent believes that Assume that she believes that agent believes that 
she is rational ...

Include as much detail and levels as you 
can 



I-POMDPI-POMDP
Integrate models of others in a decision-theoretic 
frameworkframework

An important model is a POMDP describing an agent – it 
includes all factors relevant to agent’s decision making.  g g
These are intentional models (BDI)

Represent uncertainty by maintaining beliefs over the state 
d d l  f th  t   Thi  i  i  t  i t ti  and models of other agents.  This gives rise to interactive 

belief systems 
interactive epistemology

When no other agents are present beliefs become “flat” 
and classical POMDP results

Computable approximation of the interactive beliefs: 
finitely nested belief systems 

infinitely nested beliefs are computable if there is common 
knowledge – Nash equilibriaknowledge Nash equilibria



Belief update in I-POMDPBelief update in I-POMDP
Formalization



Belief update in I-POMDPBelief update in I-POMDP

T k M i i ll ti f ld fi it

Multiagent Tiger problem

Task: Maximize collection of gold over a finite or 
infinite number of steps while avoiding tiger

Each agent hears growls as well as creaks (S, CL, or 
CR)CR)

Each agent may open doors or listen
Each agent is unable to perceive other’s observation agents i & j

Understanding the I-POMDP (level 1) belief update

LL
pj (TL)

pj (TL)



Belief update in I-POMDPBelief update in I-POMDP

T k M i i ll ti f ld fi it

Multiagent Tiger problem

Task: Maximize collection of gold over a finite or 
infinite number of steps while avoiding tiger

Each agent hears growls as well as creaks (S, CL, or 
CR)CR)

Each agent may open doors or listen
Each agent is unable to perceive other’s observation agents i & j

Understanding the I-POMDP (level 1) belief update

L GL Spj (TL)
L GL,Spj (TL)

pj (TL) pj (TL)



Belief update in I-POMDPBelief update in I-POMDP

T k M i i ll ti f ld fi it

Multiagent Tiger problem

Task: Maximize collection of gold over a finite or 
infinite number of steps while avoiding tiger

Each agent hears growls as well as creaks (S, CL, or 
CR)CR)

Each agent may open doors or listen
Each agent is unable to perceive other’s observation agents i & j

Understanding the I-POMDP (level 1) belief update

L GL S

L,GL

L,GR
pj (TL)

L GL,Spj (TL)

L,GR

pj (TL) pj (TL)L,GL



Belief update in I-POMDPBelief update in I-POMDP

T k M i i ll ti f ld fi it

Multiagent Tiger problem

Task: Maximize collection of gold over a finite or 
infinite number of steps while avoiding tiger

Each agent hears growls as well as creaks (S, CL, or 
CR)CR)

Each agent may open doors or listen
Each agent is unable to perceive other’s observation agents i & j

Understanding the I-POMDP (level 1) belief update

L GL S

L,GL

L,GR

pj
(TL)

pj (TL)
L GL,Spj (TL)

L,GR

pj (TL)pj (TL) pj (TL)
L,GL



DP in I-POMDPDP in I-POMDP
Recurse through levels beginning with level 0

Agent j
l l 0 d l  f h i  1level 0 models of horizon 1

(assumes agent i is noise)

a1 a2 a1 a2a1a1a2



DP in I-POMDPDP in I-POMDP
Best response to level 1 belief at horizon 1

Agent j 
l l 0 d l  f h i  1

Agent i
l l 1 level 0 models of horizon 1level 1

a1

a1 a2 a1 a2a1a1a2



DP in I-POMDPDP in I-POMDP

Agent j 
l l 0 d l  f h i  2

Agent i
l l 1 level 0 models of horizon 2level 1

a a a aa1

a1 a2

o1 o2

a1

a2 a1

o1 o2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

1 2 2 1 1 2 2 1



DP in I-POMDPDP in I-POMDP
Best response to level 1 belief at horizon 2

Agent j 
l l 0 d l  f h i  2

Agent i
l l 1 level 0 models of horizon 2level 1

a1
o1 o2

a a a a

a1 a2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

1 2 2 1 1 2 2 1



DP in I-POMDPDP in I-POMDP

Agent j 
l l 0 d l  f h i  3

Agent i
l l 1 level 0 models of horizon 3level 1

a a

a1
o1

o2

a a

a1
o1

o2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

1 2 2 1 1 2 2 1



DP in I-POMDPDP in I-POMDP
Best response to level 1 belief at horizon 3

Agent j 
l l 0 d l  f h i  3

Agent i
l l 1 level 0 models of horizon 3level 1

a1
o1

o2

a1
o1 o2

a1
o1 o2

1

a a

a1
o1

o2

a a

a1
o1

o2

a1 a2 a2 a1

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

1 2 2 1 1 2 2 1



POMDPs and I-POMDPsPOMDPs and I-POMDPs
Beliefs – probability distributions over states 
are sufficient statisticsare sufficient statistics

They fully summarize the information contained in 
any sequence of observations

Solving POMDPs is hard (P-space) 
d ( l f l )We need approximations (e.g., particle filtering)

Solving I-POMDPs is at least as hardSolving I-POMDPs is at least as hard
An approximation: interactive particle filtering 

If recursion does not terminate, look for fixed 
points



Summary of I-POMDPsSummary of I-POMDPs
I-POMDPs: A framework for decision making in uncertain 
multiagent settings

Analogous to POMDPs but with an enriched state space
interactive beliefs

Uses decision-theoretic solution concept
MEU

For infinitely nested beliefs  look for fixed pointsFor infinitely nested beliefs, look for fixed points

Intractability of I-POMDPs
Curse of dimensionality: belief space complexityy p p y
Curse of history: policy space complexity

Approximation 1: Interactive Particle Filter
Randomized algorithm for approximating the nested belief updateRandomized algorithm for approximating the nested belief update
Partial error bounds

Approximation 2: Interactive Influence Diagrams



Human-Agent Collaboration
Possible to create a training tool for human emergency
response teams.

E.g. firefighter managers have been trained using
RoboCup Rescue.

Emergency protocols allow a stochastic model of
humans interacting with a simulated environment.

Can it be used to devise a flexible training
environment?
How can we diversify the experience to provide a
sufficient span of scenarios?
Can a certain degree of surprise be ensured?

–



Interactive simulations
Interaction is a sequence of complex events which are

extended in time
have a component hidden from the human player

Surprise can be achieved by
Exposition of information contrary to the known

Find that the building is not abandoned
Sequencing of events that require polar response

False report of a fire in the North followed by a
report that it is in the South

–



Interactive simulations
Interaction is a sequence of complex events which are

extended in time
have a component hidden from the human player

Surprise can be achieved by
Exposition of information contrary to the known

Find that the building is not abandoned
Sequencing of events that require polar response

False report of a fire in the North followed by a
report that it is in the South

How do we produce these sequences?
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Interactive simulations
Interaction is a sequence of complex events which are

extended in time
have a component hidden from the human player

Surprise can be achieved by
Exposition of information contrary to the known

Find that the building is not abandoned
Sequencing of events that require polar response

False report of a fire in the North followed by a
report that it is in the South

How do we produce different sequences?
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Interactive simulations
Interaction is a sequence of complex events which are

extended in time
have a component hidden from the human player

Surprise can be achieved by
Exposition of information contrary to the known

Find that the building is not abandoned
Sequencing of events that require polar response

False report of a fire in the North followed by a
report that it is in the South

How do we produce different sequences?
Interactive simulations ≡ dynamic narratives

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
A firefighter discovers a new fire hazard
Police finds a new witness

Actions are effects external to the player
State transitions are plot connections
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Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections
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Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player

A witness approaches the firefighter
A bank robbery occurs

State transitions are plot connections

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

Subject to the player’s behaviour (stochasticity)
Subject to the narrator’s decisions (actions)

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

A story is a trajectory over plot points (states)

Trajectory distribution means that a different story is
told every time

–



Example – Fire Chief game
A Fire Chief manages 3 firefighter teams

Consider three stories:
Story 1
“Yesterday a firefighter Team A has been withdrawn
from the Toy Factory fire and sent to the Docks. As
your correspondent has later discovered, the
Docks housed dangerous materials, which led to
the infamous explosion and the subsequent perish
of Team A.”

–



Example – Fire Chief game
A Fire Chief manages 3 firefighter teams

Consider three stories:
Story 2
“Earlier today, following an anonymous tip, the Fire
Chief sent both Team A and Team B to the Docks,
leaving only Team C to handle the fire in our
beloved Toy Factory. However, this controversial
decision proved to be prudent, since it has
prevented the explosion of dangerous chemicals in
the Docks.”

–



Example – Fire Chief game
A Fire Chief manages 3 firefighter teams

Consider three stories:
Story 3
“Our ancient Toy Factory sustained yesterday
irrecoverable damage due to the fire that spread
from its storage rooms. All three of our firefighter
teams where at the time deployed at the Docks,
where a minor chemicals leak was handled by one
of them. As a result, by the time they arrived at the
Toy Factory the place was engulfed in flames.”

–



Example – State Space
Consider the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

–



Example – State Space
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Example – State Space
Consider the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is then a trajectory through this state space

Story 1
(3 : 1, 0 : 1) – All teams are at the Toy Factory
(2 : 0, 1 : 2) – Team A is recalled to the Docks
(2 : 0, 0 : 2) – Explosion kills Team A
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Example – State Space
Consider the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is then a trajectory through this state space

Story 2
(3 : 2, 0 : 1) – All teams are at the Toy Factory
(1 : 1, 2 : 2) – Team A and B are set to the Docks
(1 : 0, 2 : 0) – Explosion is prevented at the docks
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Example – State Space
Consider the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is then a trajectory through this state space

Story 3
(0 : 1, 3 : 1) – All teams are at the Docks
(0 : 3, 3 : 0) – Docks are safe, Toy Factory ablaze
(3 : 0, 0 : 0) – Too late: Toy Factory burned down

–



Example – Actions and Transitions
States are the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is a trajectory through this state space

Actions are hints and information given to the player
Anonymous call about chemicals at the Docks
TV coverage of the Toy Factory fire
An explosion at the Docks
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Example – Actions and Transitions
States are the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is a trajectory through this state space

Actions are hints and information given to the player
Anonymous call about chemicals at the Docks
TV coverage of the Toy Factory fire
An explosion at the Docks

How do we choose actions to produce Story 1?
How do we choose actions so that Story 3 is more
likely?

–



Target Trajectory Distribution MDP
Given an Markovian environment: < S, T,A > where

S is the set of states of the world,
A is the set of actions,
T : S × A→ ∆(S) is the transition function with
T (s′|s, a) being the probability of the world changing
from state s to state s′ if the action a was applied.

Can we prefer a specific long term sequence?
Can the preference be soft, i.e. a distribution?

–



TTD-MDP (cont)
Let τ ⊂ S+ be a set of finite sequences of states.

We will assume that τ is formed by paths in a tree.

Let P(·) be a distribution over τ .
P represents our preferences over various,
long-term system developments

A TTD-MDP is defined by a tuple < < S, T,A >, τ,P >

Notice that a transition function T : τ × A→ ∆(τ) is
naturally induced by T .

–



TTD-MDP: Questions
Given a TTD-MDP, < < S, T,A >, τ,P >

What is the policy π : τ → A that induces P?
Is it always possible to produce P?

No, transition function T may prevent that.
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TTD-MDP: Questions
Given a TTD-MDP, < < S, T,A >, τ,P >

What is the policy π : τ → A that induces P?
Is it always possible to produce P?

No, transition function T may prevent that.
How do we measure performance?

Information Theory provides a divergence
measure between two distributions:
Kullback-Leibler divergence

Can the policy be computed on-line?
Yes, the structure of τ combined with
appropriate performance measure allow that.

–



TTD-MDP: Further Questions
Assumes complete observability

Active plot point is always known to the narrator
Will not hold if the narrator is part of the simulation

Trajectories are finite
What if it’s a never-ending story?
Can a TTD-like principle be defined for infinite
trajectories?

Single agent
What if the simulation includes multiple “narrators”?
Can a similar TTD principle be applied for
multi-agent simulations?

–



Example
Two police precincts are fighting organised crime

They are unable to catch the leader
There are signs of him being in the precinct, but
not the exact location

They know that increased patrols make him
uncomfortable
If the leader moves from precinct to precinct, his
crime activity is disrupted

Ideally the police would like to modulate patrols so as
to keep the crime leader in constant agitation

– p. 3



Markovian, but not MDP
Given a partially observable Markovian environment
< S,A, T,O, Ω >

(PO)MDPs define
Utility (reward) for state transition as performance
estimate
Accumulation (averaging) as time extended
evaluation

Is there an alternative?

– p. 4
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Example (cont)
Environment < S,

⊗
Ai, T,

⊗
Ωi, {Oi} >

S = {pr1, pr2} is the set of precincts
Ai = {higher, lower} is increasing or decreasing
patrols
Ωi = S is an indicator of leader’s presence in the
precinct
T reflects leader’s tendency to move
Oi reflects the police capability to gather
information

Reference dynamics is then τ(s′, s) =

{
1 s 6= s′

0 otherwise

– p. 6



Extended Markovian Tracking
Reference takes the form τ∗ : S → ∆(S)

Evaluation of the agent

Aggregates observations into τEMT : S → ∆(S)

Internal reward based on the discrepancy between
τEMT and τ∗

Decision of the agent

Predict how actions influence τEMT

Choose actions to minimise the future discrepancy
between τEMT and τ∗

– p. 7



Data Aggregation
State information pt ∈ ∆(S)

Given that an agent performed action a and
received observation o:

pt+1(s) ∝ O(o|s, a)
∑
s′
T (s|a, s′)pt(s

′)

Dynamics Estimate τ : S × S → [0, 1]

For τ has to hold pt+1 = pt ∗ τ

Make a conservative update:
τt+1 = arg min

τ :pt+1=pt∗τ
d(τ, τt)

EMT’s update is shorthanded H[pt+1 ← pt, τt]

– p. 8



EMT Control
It is possible to utilise EMT to construct an on-line
policy to reproduce a reference dynamics τ∗

Control loop is composed by
Belief update
EMT estimation of system development
Let Ta = T (·|a, ·). Action choice

a∗ = arg min
a

DKL( H[pt ∗ Ta ← pt, τt] ‖ τ∗)

Application of a∗.

But can it be used in a multi-agent setting?

– p. 9



Stigmergy
Stigmergy is a mechanism of spontaneous, indirect
coordination

Trace left in the environment by an action
stimulates the performance of a subsequent action,
by the same or a different agent.

Assume that two agents choose actions a1,a2 and the
joint operation (a1, a2) is applied on a common system
state.

In a stigmergic environment observations will
provide information on the state dynamics and
enable action coordination

–



Multi-agent EMT
Given an environment: < S,

⊗
Ai, T,

⊗
Oi, {Ωi} >, and

a reference dynamics τ∗

Let each agent run independent EMT based control on
the complete actions space

⊗
Ai as follows:

Update beliefs pt according to T and Oi

Compute EMT estimate of system development
Compute optimal joint action

a∗ = (a∗1, ..., a
∗
N ) = arg min

a
DKL( H[pt∗Ta ← pt, τt] ‖ τ∗)

Apply a∗i

–



Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.
Apply the local portion of the joint action
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Using crime leader model and EMT

Predict the effect of a coordinated patrols.
Apply the local portion of the joint action
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.

These joint actions are not necessarily the same
Apply the local portion of the joint action
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.
Apply the local portion of the joint action
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.
Apply the local portion of the joint action

Combined into a joint action different from all
player choices
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.
Apply the local portion of the joint action

Crime leader responds to the combined joint action
leading to stigmergy
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Predict the effect of a coordinated patrols.
Apply the local portion of the joint action

Crime leader responds to the combined joint action
leading to stigmergy

Observations provide a correlation signal
Dynamics estimates are correlated
Locally computed joint actions will not differ
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.
Apply the local portion of the joint action

Crime leader responds to the combined joint action
leading to stigmergy

Observations provide a correlation signal
Dynamics estimates are correlated
Locally computed joint actions will not differ

too much too frequently
in their effect on the dynamics estimate

–
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Stochasticity is Bad
System is continually changing

No single state trajectory is certain

In partially observable systems
Can not track a single state trajectory
Concept of system dynamics is needed
Only apparent dynamics can be used
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Stochasticity is Good
System is continually changing

No single state trajectory is certain

In partially observable systems
Can not track a single state trajectory
Concept of system dynamics is needed
Only apparent dynamics can be used

–



BibliographyBibliography
Game theory
1. Fundenberg, D. and Tirole, J., Game theory. MIT Press 1. Fundenberg, D. and Tirole, J., Game theory. MIT Press 

(textbook)
2. Owen, G., Game theory. 3rd Edition, Academic Press 

(textbook)
3 Binmore  K Essays on foundations of game theory3. Binmore, K., Essays on foundations of game theory.

Pittman, (edited book)
4. Harsanyi, J. C. (1967). Games with incomplete information 

played by ‘Bayesian' players. Management. Science, 14(3), 
( f )

g
159-182 (reference on Bayesian games)

5. Fudenberg, D., & Levine, D. (1997). Theory of Learning in 
Games. MIT Press (book for fictitious play)

Regret matching
1. Hart, S. & Mas-Colell A. (2000). A simple adaptive 

procedure leading to correlated equilibrium. Econometrica, p g q ,
68(5): 1127-1150

2. Hart, S. (2005). Adaptive heuristics. Econometrica, 73(5): 
1401-1430



BibliographyBibliography
DEC-MDP
1. Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. 

(2002)  The complexity of decentralized control of Markov decision (2002). The complexity of decentralized control of Markov decision 
processes. Mathematics of Operations Research, 27(4), 819-840 
(ref. on complexity of DEC-MDPs)

2. Becker, R., Zilberstein, S., Lesser, V., & Goldman, C. V. (2003). 
Transition-independent decentralized markov decision processes. In
Autonomous Agents and Multiagent Systems  Conference (ref  on Autonomous Agents and Multiagent Systems  Conference (ref. on 
TI-DEC-MDPs)

Uncertainty UtilizationUncertainty Utilization
1. Rabinovich, Z. & Rosenschein, J. S. (2005). Multiagent Coordination 

by Extended Markov Tracking. In Autonomous Agents and 
Multiagent Systems Conference  (ref. on EMT)

2. David L. Roberts, Mark J. Nelson, Charles L. Isbell, Jr., Michael 2. David L. Roberts, Mark J. Nelson, Charles L. Isbell, Jr., Michael 
Mateas, and Michael L. Littman.  (2006). Targeting Specific 
Distributions of Trajectories in MDPs. In Twenty-first 
Conference on Artificial Intelligence (ref. on TTD-MDPs)

3. Sooraj Bhat, David L. Roberts, Mark J. Nelson, Charles L. Isbell, 
and Michael Mateas  (2007)  A Globally Optimal Online and Michael Mateas. (2007). A Globally Optimal Online 
Algorithm for TTD-MDPs. In Autonomous Agents and Multiagent 
Systems Conference (ref. on TTD-MDPs)



BibliographyBibliography
DEC-POMDP and specializations
1. Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. 

(2002)  The complexity of decentralized control of Markov (2002). The complexity of decentralized control of Markov 
decision processes. Mathematics of Operations Research, 27(4), 
819-840 (ref. on complexity)

2. Hansen, E., Bernstein, D., & Zilberstein, S. (2004). Dynamic 
Programming for Partially Observable Stochastic Games. In Programming for Partially Observable Stochastic Games. In 
Nineteenth National Conference on Artificial Intelligence (ref. on 
DP in DEC-POMDPs)

3. Szer, D., & Charpillet, F. (2006). Point-based Dynamic 
Programming for DEC-POMDPs. In Twenty-First National 
Conference on Artificial Intelligence (ref  on point based DP in Conference on Artificial Intelligence (ref. on point based DP in 
DEC-POMDPs)

4. Seuken, S., and Zilberstein, S. (2007) Memory-bounded Dynamic 
Programming for  Decentralized POMDPs. In International Joint 
Conference on Artificial Intelligence  (ref. on MBDP in DEC-g (
POMDPs)

5. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., & Marsella, S. 
(2003). Taming Decentralized Pomdps :Towards Efficient Policy 
Computation for Multiagent Settings. In International Joint 
Conference on Artificial Intelligence (ref  on MTDP and JESP)Conference on Artificial Intelligence (ref. on MTDP and JESP)

6. Nair R., Varakantham, P., Tambe, M., & Yokoo, M. (2005). 
Networked Distributed POMDPs: A Synthesis of Distributed 
Constraint Optimization and POMDPs. In Twentieth National 
Conference on Artificial Intelligence (ref. on ND-POMDPs)g ( )



BibliographyBibliography
Interactive POMDP
1 Gmytrasiewicz  P  J  & Doshi  P  (2005)  A framework for 1. Gmytrasiewicz, P. J., & Doshi, P. (2005). A framework for 

sequential planning in multi-agent settings. Journal of 
Artificial Intelligence Research, 24:49-79 (ref. on I-POMDP)

2. Doshi, P., & Gmytrasiewicz, P. J. (2009). Monte Carlo , , y , ( )
Sampling Methods for Approximating Interactive POMDPs. 
Journal of Artificial Intelligence Research, 34:297-337 (ref. 
on PF in I-POMDP)

3 P  D  & D hi  P  (2008)  G li d P i t B d V l  3. Perez, D., & Doshi, P. (2008). Generalized Point Based Value 
Iteration for Interactive POMDPs. In Twenty-third 
Conference on Artificial Intelligence (AAAI) (ref. on PBVI in 
I-POMDP)I POMDP)

4. Aumann, R. J. (1999). Interactive epistemology i: 
Knowledge. International Journal of Game Theory, 28, 263-
300

5. Brandenburger, A., & Dekel, E. (1993). Hierarchies of beliefs 
and common knowledge. Journal of Economic Theory, 59, 
189-198 (ref. on hierarchical belief systems)


